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We present a theoretical study on the electron tunneling through a single barrier created in a two-dimensional
electron gas �2DEG� and quantum spin Hall �QSH� bar in a HgTe/CdTe quantum well with inverted band
structures. For the 2DEG, the transmission shows the Fabry-Pérot resonances for the interband tunneling
process and is blocked when the incident energy lies in the bulk gap of the barrier region. For the QSH bar, the
transmission gap is reduced to the edge gap caused by the finite size effect. Instead, transmission dips appear
due to the interference between the edge states and the bound states originated from the bulk states. Such a
Fano-like resonance leads to a sharp dip in the transmission which can be observed experimentally.

DOI: 10.1103/PhysRevB.81.235323 PACS number�s�: 72.25.�b, 73.43.Jn, 73.63.�b

I. INTRODUCTION

Topological insulators �TIs� with time reversal symmetry
have attracted a rapid growing interest due to their remark-
able band structures and electronic properties.1 A two-
dimensional �2D� or three-dimensional �3D� TI material is
characterized by gapless and helical edge or surface states
within the bulk excitation gap. The number of Dirac points
can be used to classify weak and strong TIs.2–4 The gapless
edge �surface� states show a linear Dirac dispersion and are
observed experimentally by using the angle resolved photo-
emission spectroscopy.5–7 Interestingly, these edge and sur-
face states are spin filtered and robust against nonmagnetic
impurity scattering due to the helicity of these states.8–10

In a 2D quantum spin Hall �QSH� system, e.g., a HgTe/
CdTe quantum well �QW� with inverted band structures, a
single pair of helical edge states in the QSH bar is demon-
strated experimentally utilizing the quantized conductance
when the Fermi energy lies in the bulk gap.11–13 Such an
edge channel transport could be used to construct spintronic
devices with improved performance. To this goal, it is highly
desirable to achieve an electric control of the electron trans-
port related with the helical edge states. Very recently, a
single barrier in HgTe/CdTe QWs has been fabricated by
means of voltage gates,14 which could be used as a building
block for the TI-based ballistic circuits.

In this work, we study the electron transport through pla-
nar single-barrier structures in the QSH system based on
HgTe/CdTe QWs. As will be seen, rich transmission features
will show up as the barrier height varies. Fano-like or Fabry-
Pérot-like resonances can be observed due to the interference
in the barrier region. The minigap of edge states caused by
the finite size effect15 results in a conductance dip at a finite
temperature, as observed in a recent experiment in Hall bar14

and H-bar16 structures for QSH effect measurements.
The paper is organized as follows. In Sec. II, we present

the model Hamiltonian for the 2D electron gas �2DEG� in
HgTe/CdTe QWs under an electric modulation. The descrip-
tion of the transmission calculations based on the scattering
matrix method is given for both the full 2D and quasi-one-

dimensional �Q1D� cases. In Sec. III, we show the transmis-
sion and conductance features of both the full 2D and Q1D
systems to illustrate the role of edge states in the tunneling
transport. The numerical results are compared with a recent
experiment. We make conclusion remarks in Sec. IV.

II. THEORETICAL MODEL

We consider a 2DEG and a QSH bar in the HgTe/CdTe
quantum well with inverted band structures, which are sche-
matically shown in Figs. 1�a� and 1�b�, respectively. A volt-
age gate is placed on top of the heterostructure to create an
electrostatic modulation U�x ,y�. For simplicity, the electric
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FIG. 1. �Color online� �a�-�b� Schematic illustration of a single-
barrier structure based on a 2DEG �a� or Q1D Hall bar �b� confined
in a HgTe/CdTe QW with inverted band structures. A rectangular
shape with height V and length L is taken for the electric potential.
The barrier height can be tuned by a voltage gate on top of the
heterostructure. �c�-�d� The energy spectra in the lead and the bar-
rier regions for the considered 2DEG ��c�� and Q1D Hall bar ��d��
systems. The dashed and solid lines correspond to the cases with
and without the RSOI, respectively. The green dashed line indicates
the position of the Fermi energy EF.
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potential is assumed to be of a steplike, which is V in the
stripe region 0�x�L and 0 otherwise. The barrier height V
can be tuned by adjusting the top gate voltage. Electrons
injected from a quantum point contact �QPC� can transmit or
reflected by the single electric planar barrier. In a QSH bar
�see Fig. 1�b��, there is a lateral confinement imposed on the
2DEG in a HgTe QW. Both systems can be divided into three
regions: the left lead region �L�, the middle barrier region
�M�, and the right lead region �R�. The comparison between
the transport properties of the two systems will reveal the
role of the helical edge states in the tunneling through a
single barrier.

The low-energy spectrum of carriers in HgTe/CdTe QWs
with inverted band structures can be well described by a
four-band Hamiltonian, which is obtained from the eight-
band Kane model by neglecting the light-hole and spin-split
bands.12 Allowing for the presence of the Rashba spin-orbit
interaction �RSOI�, such a single-particle Hamiltonian reads

H = � H�k� HRSOI�k�
HRSOI

� �− k� H��− k� �
=�

�k + M�k� Ak− i�k− 0

Ak+ �k − M�k� 0 0

− i�k+ 0 �k + M�k� − Ak+

0 0 − Ak− �k − M�k�
� ,

�1�

where k= �kx ,ky� is the in-plane momentum of electrons,
H�k�=�kI2�2+d�k� ·�, d�k�= �Akx ,Aky ,M�k�� and �
= ��x ,�y ,�z�, �k=C+U−D�kx

2+ky
2�, M�k�=M −B�kx

2+ky
2�,

k�=kx� iky, � is the RSOI strength, and A, B, C, D, and M
are the parameters describing the band structure of the HgTe/
CdTe QW. Note that the QSH and band insulator are charac-
terized by the sign of the parameter M, which is determined
by the thickness of the HgTe/CdTe QW.12 The velocity op-
erator along the propagating direction, i.e., the x axis, is
given by

�x =�
− 2D+kx A i� 0

A − 2D−kx 0 0

− i� 0 − 2D+kx − A

0 0 − A − 2D−kx

� , �2�

where D�=D�B.
The first structure �see Fig. 1�a�� is homogeneous along

the y direction. The transverse wave vector ky is thus con-
served. For a given energy E, the plane-wave-like or
evanescent-wave-like eigensolutions of the Hamiltonian Eq.
�1�, in a given region 	 �	=L ,M ,R�, have the form


	�x,y� = �	 exp�i�kx
	x + kyy�� . �3�

The longitudinal wave vector kx=kx
	 is determined from the

equation

�E − �k + �
k�

2
�2

= �M�k� + �
k�

2
�2

+ A2k2, �4�

where �= �1 represents the spin branch, k=	kx
2+ky

2, and
ei�=k+ /k. The analytical expression of the �un-normalized�
eigenvector �	 is 
M�k�+E−�k ,Akei� , �M�k�+E−�k��ei� ,
−�Ak�T.

For the Q1D system shown in Fig. 1�b�, the traveling-
wave-like or evanescent-wave-like eigensolutions of the
Schrödinger equation H
=E
 in a given region 	 can be
written as the form


	�x,y� = exp�ikx
	x��

n

�n
	n�y� , �5�

where n�y�=	 2
W sinn�y

W with n=1,2 ,3 , . . .. The longitudinal
wave vector kx=kx

	 and the eigenvector �	 �with 4�1 blocks
�n

	, n=1,2 ,3 , . . .� are determined from the following gener-
alized eigenvalue problem:

�0 1

S T
���

F
� = kx�1 0

0 X
���

F
� , �6�

where F=kx�, S, T, and X consist of 4�4 submatrices with
the form

Smn =�
�mn

+ − iA�mn ��mn 0

iA�mn �mn
− 0 0

��mn 0 �mn
+ − iA�mn

0 0 iA�mn �mn
−

� , �7�

Tmn =�
0 A i� 0

A 0 0 0

− i� 0 0 − A

0 0 − A 0
� , �8�

Xmn =�
D+ 0 0 0

0 D− 0 0

0 0 D+ 0

0 0 0 D−

� , �9�

and �mn
+ , �mn

− and �mn are given by

�mn
� = C + U − E � M − D�m�y��ky

2�n�y�� , �10�

�mn = m�y��ky�n�y�� . �11�

For a given solution 
	 with a real kx
	, the propagating direc-

tion is determined by the sign of its averaged velocity �	

=�0
W
	+�x


	dy=�n�n
	+�x�kx

	��n
	, where �x�kx

	� is obtained
from Eq. �2� by the replacement kx→kx

	.
For both systems, we denote the eigenstates �in either the

form Eq. �3� or Eq. �5�� 
m;F
	 and 
m;B

	 when it is the mth
propagating or evanescent mode along the forward and back-
ward directions. For an electron incident from a given state

n;F

L in the left side, the wave functions in the different re-
gions of the structure can be written as
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L�x,y� = 
n;F
L �x,y� + �

m

rm;n
m;B
L �x,y�; �12�


M�x,y� = �
m

�cm;n
m;F
M �x,y� + dm;n
m;B

M �x,y��; �13�


R�x,y� = �
m

tm;n
m;F
R �x,y� . �14�

The transmission and reflection amplitudes �tm;n and rm;n�
together with the coefficients cm;n and dm;n are obtained by
matching the wave functions and the currents at the two in-
terfaces, which requires 
L�x=0,y�=
M�x=0,y�, �x
L�x
=0,y�=�x
M�x=0,y�, 
M�x=L ,y�=
R�x=L ,y�, and �x
M�x
=L ,y�=�x
R�x=L ,y�. For the 2DEG system shown in Fig.
1�a�, the analytical results of the transmission and reflection
are obtained, but omitted here because their lengthy expres-
sions. By means of the scattering matrix theory,17 we can get
the total transmission

T = �
m,n

RM
�n;F

R

�m;F
L �tm;n�2, �15�

where RM denotes that the sum is taken over all right-
moving modes in the left and right side/lead. For a given
Fermi energy EF, the conductance at zero temperature is
given by18

GQSH
0 �EF� = G0T�EF�

and

G2D
0 �EF� =

W

2�
G0� T�EF,ky�dky ,

for the QSH and 2DEG system, respectively, where G0
=e2 /h. At a finite temperature TB, the ballistic conductance
can be written as

G�EF,TB� =� �−
� f

�E
�G0�E�dE , �16�

where f�E�= 
1+exp��E−EF� / �KBTB���−1 is the Fermi-Dirac
distribution.

III. RESULTS AND DISCUSSIONS

We first consider the single barrier based on a 2DEG in a
HgTe/CdTe QW with the inverted band structures but with-
out RSOI. The transmission spectra for electrons traversing
such a system are shown in Fig. 2, which can be understood
from the energy spectra in Fig. 1�c�. By tuning the gate volt-
age, or equivalently, the barrier height V, three tunneling
processes can be realized �see Fig. 2�c��: the intraband pro-
cess, the interband process, and the tunneling process
through the bulk gap. For the case of intraband process, the
total transmission shows a slight oscillation around the per-
fect transmission �see Fig. 2�a� and the black line in Fig.
2�b��. For the tunneling process occurring between the con-
duction and valence bands, i.e., the interband tunneling, the
Fabry-Pérot resonances are observed due to the multiple re-

flections in the barrier region between the two interfaces �see
the blue lines in Figs. 2�b� and 2�d��. When the incident
energy lies within the band gap of the barrier region �see the
red line in Fig. 2�b��, the transmission decays exponentially
with the barrier length. In this case electrons can transmit
through the barrier via the evanescent mode therein, espe-
cially for the normal incidence. More detailed features of the
transmission are shown in Fig. 2�f�.

For a fixed incident energy, the transmission is blocked
when the incident angle � is larger than a value �C �see Figs.
2�d� and 2�e��. The critical angle �C can be estimated by the
Snell’s law, �C�arcsin�kM /kL�, which is accurate for a large
barrier length. When the RSOI is included, the transmission
resonances will split when interband tunneling occurs �see
Fig. 3�. The reason is that the Fabry-Pérot interference be-
comes spin dependent in the presence of RSOI. For the in-
traband tunneling process, the RSOI would induce a spin
splitting for the conduction band, results in the different
Fermi wave vectors k↑

M and k↓
M. One can expect that this spin
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(c) (d)
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FIG. 2. �Color online� Total transmission T for the single barrier
structure based on a HgTe 2DEG. The RSOI is absent. Without
special specification, the parameters used in the calculations are A
=364.5 meV nm, B=−686 meV nm2, C=0, D=−512 meV nm2,
and M =−10 meV. �a�-�d� T is plotted as a function of incident
energy E, barrier length L, barrier height V, and incident angle �.
The other parameters in the four panels are: �a� L=100 nm, �=0,
V=−15 meV �black line� and 15 meV �red line�; �b� E=20 meV,
�=0, V=−15 meV �black line�, V=15 meV �red line� and V
=35 meV �blue line�; �c� L=100 nm, �=0, E=20 meV; �d� E
=20 meV, L=100 nm, V=−15 meV �black line�, V=15 meV �red
line� and V=35 meV �blue line�. �e� Contour plot of T as functions
of incident angle � and potential height V for E=20 meV and L
=100 nm. �f� Contour plot for T as functions of barrier length L
and height V for E=20 meV and �=0.
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splitting would lead to different refractions for different spin
orientation according to the Snell’s law. But the spin splitting
is rather small because the Fermi wave vectors k↑↓

M

�0.1nm−1 considered in our calculation are quite small.
Therefore, the moderate-strength RSOI considered in this
work has a slight influence on the transmission �see Fig.
3�b��. While for the interband tunneling process, the group
velocities for electron and hole are very different due to the
different effective masses �see Fig. 1�c��. The RSOI would
induce a significant splitting of the resonant peaks in the
transmission. These resonant peaks come from the Fabry-
Pérot resonances in the barrier region at proper incident
angle for a fixed Fermi wave vector in the absence of the
RSOI. If the RSOI is included, the Fermi wave vectors of
spin-up and spin-down hole states become obviously differ-
ent for the valence band �see the black dashed line in Fig.
1�c��. This significant difference would lead to the large
splitting of the resonant peaks of the transmission. The simi-
lar feature can also be found for the inter- and intra-band
tunneling processes at a fixed incident angle by adjusting the
gate voltage �see Fig. 3�b��.

So far, we have studied the tunneling of electrons through
a single planar barrier in the HgTe 2DEG without the edge
effect. Considering a realistic sample with finite transverse
size, such as a QSH bar, the effect of the sample edges
should be considered in the calculation. For a finite stripe
geometry as in Fig. 1�b�, the band structures in the barrier
and lead region are shown in Fig. 1�d�. It can be seen that
edge states with a Dirac-like linear dispersion appear within
the bulk gap. A tiny gap for the edge states can be discerned
in Fig. 1�d� due to the effect of a finite transverse size. Here-
after we focus mainly on the electron transport process con-
cerning edge channels. In Q1D QSH bar, the RSOI has a
minor influence on the total transmission. This is because the
Rashba spin-orbit interaction arising from the structure in-
version asymmetry will coupled the spin-up and spin-down
subbands at the same in-plane momentum k. For the edge
states, the spin-up and spin-down electrons with the same
in-plane momentum localize at the opposite edges, the over-
lap of their wave functions can be negligibly small, therefore
the RSOI would not affect the edge states significantly.

In Figs. 4 and 5, we show the transmission variations with
the barrier height, the incident energy, and the structural pa-

rameters for a Q1D QSH bar with width W=200 nm. When
the incident energy E is fixed at a value in the bulk gap but
not in the edge gap of the leads, several tunneling processes
will happen as the barrier height V changes �see Figs. 4�a�,
4�b�, 5�a�, and 5�d��. If the incident energy E locates in the
bulk gap of the barrier region and in the same or opposite
branch of the linear spectrum, the transmission is nearly per-
fect or oscillating with V. The oscillation also originates
from the Fabry-Pérot interference since the velocities of edge
states in up branches are slightly different especially at the
Fermi energy EF�20 meV, although the energy spectrum of
the edge states seems perfectly linear �see Fig. 1�d��. For the
special case that incident energy E is in the edge gap of the
barrier region, the transmission decays exponentially with
the barrier length �see Figs. 5�a� and 5�d�� due to the absence
of a propagating mode in the barrier region. The most inter-
esting feature is observed as the incident energy E is close to
the bottom or top of a sub-band of bulk states. In this case,
electrons can either propagate via edge channels through the
barrier region or tunnel through the same region via quasi-
bound states derived from this sub-band. The interference
between the propagating edge states and the evanescent
states leads to a series of Fano resonances in the transmission
spectrum. Sharp transmission dips also appear if incident en-
ergy E is outside the bulk gap of the leads but within that of
the barrier region �see Figs. 4�c� and 4�d��. The transmission
features presented above depend strongly on the energies of
the quasibound states confined in the barrier, which can be
tuned by the gate voltage as well as the structural parameters
�L and W�. This is clearly reflected in Fig. 5. Here, it should
be stressed that the perfect transmission is a unique feature
that the electron transport in a Q1D TI bar via the topological
edge states. This can be observed easily in Figs. 4�a�–4�d�,
5�a�, 5�b�, 5�d�, and 5�e�, e.g., the region at 10�EF�25 in
Fig. 4�c�, −25�EF�0 in Fig. 4�d� and especially at the re-

FIG. 3. �Color online� The total transmission T through the
single barrier structure in a 2DEG with the RSOI, shown schemati-
cally in Fig. 1�a�. �a� The contour plot of T as functions of incident
angle � and RSOI strength � for E=20 meV, V=35 meV and L
=100 nm. �b� The contour plot for the electron transmission as
functions of barrier height V and RSOI strength � for E=20 meV,
L=100 nm and �=0.2 �.
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FIG. 4. The total transmission T through a single barrier in a
QSH bar �see Fig. 1�b��. �a�-�b� The transmission T as a function of
barrier height V for E=10 meV �a� and −10 meV �b�. �c�-�d� The
transmission T as a function of incident energy E for V=15 meV
�c� and V=−15 meV �d�. The barrier length and the wire width are
taken as L=100 nm and W=200 nm, respectively.
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gion M �0 in Fig. 5�e� where the electron transmits through
the barrier nearly perfectly. But for the case that the electron
transport in a Q1D band insulator bar �see Fig. 5�e� at the
region M �0�, this conductance plateau disappears. This
clearly demonstrates that there is a big difference in the con-
ductances for the topological insulator �M �0� and band in-
sulator �M �0� spin Hall bars.

Finally we examine to what extent the transmission fea-
tures shown above are reflected in the measurable quantity,
the conductance G at a finite temperature. In Figs. 6 and 7
the conductance at TB=4 K are plotted as a function of Vg
=−V for both the 2DEG and QSH system. For comparison
the zero-temperature conductance G0 is also presented. For
the 2DEG system, the profile of the conductance curve is
almost unchanged by the temperature-induced average ef-
fect, where the conductance curves can be calculated by in-
tergration over all the incident angles. At TB=4 K the zero-
conductance region shrinks. For the QSH system the Fermi
energy is fixed at such a value that several bulk sub-bands in

the leads are open. With the variation of Vg, the number of
propagating channels in the barrier region changes which
determines the height of conductance plateau shown in Fig.
7�a�. The rapid oscillations appear in the G0−Vg curve due to
the presence of Fano resonances and multimode interfer-
ences. Note that in the given parameters the gap of edge
states is approximately 3 meV and thus a remarkable con-
ductance gap is seen. At TB=4 K the interference effect is
washed out and the conductance gap becomes a valley �see
Fig. 7�b��. The presence of a conductance valley rather than
a conductance gap �as in Fig. 6�b�� in the G−Vg curve agrees
well with a recent conductance measurement.14 On the two
sides of the conductance valley, a perfect plateau with height
2e2 /h appears due to the contribution of the edge channels.
The width of the conductance plateau and the gap are sensi-
tive to the system parameters �particularly, the parameter M�
which can be controlled by the thickness of the HgTe QW. In
Fig. 7�b� the conductance decays in the high Vg regime,
while a saturation has been observed in the experiment. This
reason for this difference is that the light-hole band neglected
in the four-band model provides additional transport channel.

IV. CONCLUSIONS

In summary, we have theoretically investigated the elec-
tron tunneling through a planar single barrier in a HgTe/

FIG. 5. �Color online� The total transmission T through a single
barrier in a Q1D QSH bar. �a� The dependence of T on the barrier
Length L. The wire width is W=200 nm and the incident energy is
set at E=13 meV. The potential height is set at V=5 �black line�,
−5 �red� line, and 5.5 �blue line� meV. Note that the blue line cor-
responds to the tunneling through the gap in the barrier region. �b�
Contour plot of T as functions of L and V for E=10 meV and W
=200 nm. �c� Contour plot of T as functions of L and W for E
=10 meV and V=−10 meV. �d� Contour plot of T as functions of
E and V for L=100 nm and W=200 nm. �e� Contour plot of T as
functions of M and V for L=100 nm, W=200 nm and E=
−5 meV.
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FIG. 6. �Color online� �a� The dependence of the conductance G
on Vg=−V for the single barrier structure based on a HgTe 2DEG at
zero temperature. The barrier length L=1000 nm, the Fermi energy
EF=20 meV and M =−4 meV. �b� Same as �a�, but at a finite tem-
perature TB=4 K.
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FIG. 7. �Color online� �a� The dependence of the conductance G
on Vg=−V for the single barrier structure based on a Q1D QSH bar
at zero temperature. The parameters are W=200 nm, L=1000 nm,
M =−4 meV, and EF=30 meV. �b� Same as �a�, but at a finite
temperature TB=4 K.
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CdTe quantum well with inverted band structures in 2DEG
and Q1D systems. We have shown that in a 2DEG system
the electron transmission exhibits a series of peaks for the
interband tunneling process, which comes from the quantum
interference of electron propagating forth and back in the
barrier region. For the interband tunneling process, the trans-
mission of electrons shows a strong dependence on the
strength of RSOI, due to the lifting of the spin degeneracy of
the energy bands, and the resonant peaks split into the dou-
blet. In Q1D system, for the QSH-bar, it displays a series of
Fano dips for the intraband tunneling process and a slightly

oscillation for the interband tunneling process. These tunnel-
ing processes are dependent on the quasibound states
strongly, e.g., the Fabry-Pérot modes, in the barrier. These
resonance are highly sensitive to the temperature effect.
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